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Abstract

In the present survey, we recall the main convergence results con-
cerning the theory of neural network (NN) operators. Pointwise and
uniform approximation results have been proved for the classical (lin-
ear) NN operators, as well as, for their corresponding max-product
(nonlinear) version, when continuous functions de�ned on bounded
domains are approximated. In order to approximate also not necessar-
ily continuous functions, a Kantorovich-type version of the above NN
operators has been studied in an Lp-setting. Finally, several examples
of sigmoidal activation functions for the aforementioned operators have
been provided.
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1 Introduction

In the present survey paper, we describe in detail a new approach to study
neural network (NN) approximation, by exploiting the Operator Theory, in
particular the study of the NN operators. The theory of NN operators has
been introduced in last years as a constructive approach for approximating
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functions by a neural process. The latter topic, other than the �classical�
theory of arti�cial NNs, is strictly related to the Approximation Theory.
Indeed, many papers have been written concerning applications of NNs to
this subject, see, e.g., [43, 63, 64, 13, 46, 52, 45, 18, 50, 47, 56]. The �rst
author who studied approximations by NNs activated by sigmoidal functions
was G. Cybenko [43], who exploited the Hahn-Banach theorem to prove a
density result by means of the aforementioned NNs. Estimates for the order
of approximation, in various setting have been proved in [11, 48, 58, 59].
Moreover, a subject which was deeply studied was the �best approximation
problem� by NNs in suitable functions spaces, see, e.g., [44, 53, 54, 55]. The
latter study is based on techniques from Functional Analysis.

For any bounded function f : R → R, where R := [a1, b1]× ...× [as, bs] ⊂
Rs, the classical de�nition of an NN operator is given by:

Fn(f, x) :=

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

f (k/n) Ψσ(nx− k)

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

, (I)

for every x ∈ R, and k = (k1, k2, . . . , ks). Here, b·c stands for the �integral
part� of a given real number, while d·e stands for the �ceiling�, while Ψσ(x)
is a multivariate density function, generated by the product of s univariate
functions φσ(x), where each of them is constructed by using a suitable �nite
linear combination of sigmoidal functions σ.

Originally, the main di�culty arising to study approximations by NNs
was to be able to construct concretely the NNs which approximate a given
function, f , de�ned on a �xed bounded set of Rs. Such a problem was solved,
e.g., for functions of one variable by several authors (see, e.g., [62, 20, 65]),
who provided constructive proofs, for instance, in the space of continuous
functions. Many more di�culties arise when dealing with functions of sev-
eral variables. Some results have been obtained by (quite non standard)
approaches based on convolutions, and resorting to the theory of �ridge func-
tions�, see, e.g., [21].

A solution can be proposed for the theoretical problems described above,
by an approach based on operators of the form (I). Indeed, in the classical NN
operators, the coe�cients, the weights and the thresholds needed in order to
generate a NN which approximates a function f are known in their analytical
form. For this reason, we can say that the approximation algorithm provided
by (I) can be called �constructive�.

The theory mentioned above, was introduced by Anastassiou in [1], and
was inspired by a paper of Cardaliaguet and Euvrard [19]. The latter topic
was widely investigated in a number of articles, recently collected in the
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monograph [2]. The approximation results mainly proved in [2], for func-
tions of one as well as several variables, involve NN operators activated by
logistic and hyperbolic tangent sigmoidal functions, i.e., Ψσ(x) is generated
by σ`(x) := (1 + e−x)−1, and σh(x) := (1/2)(tanhx + 1), respectively. The
results proved in [2] have been successfully improved in the papers [30, 31],
for what concerns the order of approximation as well as the kind of activa-
tion functions adopted for the NN operators. More precisely, these results
have been extended in order to include a larger class of sigmoidal activation
functions. Some convergence results in the speci�c cases of NN operators
activated by σ` and by σh were also obtained in [14, 15].

The results described above, are proved only in the case of continuous
functions, which is the most natural setting for the classical operators in
(I), due to their pointwise nature. In [32], a Kantorovich version of the
previous operators has been introduced and studied, in order to approximate
by NN-type operators also functions that are not necessarily continuous.
Such operators are of the form

Kn(f, x) :=

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

[
ns
∫
Rnk

f (u) du

]
Ψσ(nx− k)

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

, (II)

for every x ∈ R. Here, the symbols Rnk denote the sets

Rnk :=

[
k1
n
,
k1 + 1

n

]
× · · · ×

[
ks
n
,
ks + 1

n

]
⊂ Rs, (III)

in which we compute the mean values ns
∫
Rnk
f (u) u of a given locally inte-

grable function f . For the operators in (II), convergence results in Lp(R),
1 ≤ p < +∞, have been obtained, other than pointwise and uniform approx-
imation results as well. Note the essential feature that in (II) averages of f
replace pointwise values.

Another useful approach for the study of NN operators, has been intro-
duced in [3] as further extension of [19], by using the max-product approach.
The max-product approach was �rst introduced by Coroianu and Gal in some
papers (see, e.g., [24, 25, 26]), and consists essentially in replacing the sym-
bol

∑
(for operators de�ned by �nite sum or series) with the sup-operator∨

. This simple modi�cation transforms linear into nonlinear operators, thus
allowing to improve the order of approximation that can be achieved when
continuous functions are approximated. In [3], the authors considered op-
erators of the NN-type, with centered bell-shaped density functions having
compact support, and which satisfy some other additional conditions. In
this paper we recall the results proved in [40] (see also [39] for the theory
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in a one-dimensional setting), where the max-product NN operators, F
(M)
n ,

are introduced as an extension of the operators in (I), and we extend the
results of [3] avoiding the assumption of compact support on the bell-shaped
density functions φσ and Ψσ. The max-product NN operators are of the form

F (M)
n (f, x) :=

∨
k∈Jn

f (k/n) Ψσ(nx− k)

∨
k∈Jn

Ψσ(nx− k)
, x ∈ R, (IV)

where Jn denotes the set of indexes k ∈ Zs, such that ki = dnaie, dnaie +
1, dnaie + 2, ..., bnbic, i = 1, ..., s, for every �xed n ∈ N+ su�ciently large,
where f is a bounded real-valued function. By the family of the nonlinear
operators in (IV) it is possible to approximate (pointwise and uniformly)
functions more e�ciently than its corresponding linear counterpart in (I).

2 Preliminary results and notations

In this section, we recall some preliminary notion and results that will be
useful in the following. By the symbol C(R), we will denote the space of all
continuous functions f : R → R, equipped with the usual sup-norm ‖ · ‖∞.
Here, R ⊂ Rs, denotes the multivariate set R := [a1, b1] × ... × [as, bs].
Moreover, by C+(R), we will denote the subspace of C(R) containing all the
nonnegative functions. Finally, by Lp(R), 1 ≤ p < +∞, we will de�ne the
usual Lp-space equipped with the usual ‖ · ‖p norm.

Now, we recall the following

De�nition 2.1. A measurable function σ : R → R is called a sigmoidal

function, if limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1.

From now on, we consider non-decreasing sigmoidal functions which sat-
isfy all the following assumptions:

(Σ1) σ(x)− 1/2 is an odd function;

(Σ2) σ ∈ C2(R), and is concave for x ≥ 0;

(Σ3) σ(x) = O(|x|−1−α) as x→ −∞, for some α > 0.

Now, we de�ne the following univariate and multivariate density func-
tions:

φσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)], x ∈ R, (1)

and,

Ψσ(x) := φσ(x1) · φσ(x2) · ... · φσ(xs), x := (x1, ..., xs) ∈ Rs. (2)

In the following lemma, we summarize a number of important properties
enjoyed by φσ(x) and Ψσ(x), established in [30, 31] and used below.
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Lemma 2.2. (i) φσ(x) ≥ 0 for every x ∈ R and lim
x→±∞

φσ(x) = 0;

(ii) φσ(x) is an even function;

(iii) φσ(x) is non-decreasing for x < 0 and non-increasing for x ≥ 0;

(iv) φσ(x) = O(|x|−1−α), as x→ ±∞, and Φσ(x) = O(‖x‖−1−α2 ), as ‖x‖2 →
+∞, where by ‖ · ‖2 denotes the usual Euclidean norm of Rs, ‖x‖2 := (x21 +
...+ x2s)

1/2, with x ∈ Rs;

(v) for every x ∈ Rs,
∑

k∈Zs Ψσ(x− k) = 1, and Ψσ ∈ L1(Rs);

(vi) the series
∑

k∈Zs Ψσ(x − k) converges uniformly on compact subsets of

Rs;

(vii) for every γ > 0, we have

lim
n→+∞

∑
‖x−k‖2>γn

Ψσ(x− k) = 0,

uniformly with respect to x ∈ Rs.

Remark 2.3. (a) The function φσ(x) is a �centered bell shaped function�,
according to the de�nition given in [19] by Cardaliaguet and Euvrard.

(b) From condition (iii) of Lemma 2.2, and the assumptions made on σ, it
is easy to deduce that φσ(0) ≥ φσ(x) for every x ∈ R, and φσ(0) ≤ 1/2.
Consequently, we have Ψσ(x) ≤ Ψσ(0) ≤ 2−s, for every x ∈ Rs.

(c) Note that, condition (Σ2) can be weakened by assuming that σ satis�es
(iii) of Lemma 2.2, i.e., requiring that the corresponding φσ satis�es the
following condition:

φσ(x) is non-decreasing for x < 0 and non-increasing for x ≥ 0. (3)

In this case, the present theory still holds and the main advantage that can
be achieved is that, we can apply it to non-smooth sigmoidal functions as
well. For more details, see [30, 31].

3 The classical neural network operators

In this section, we recall de�nition and main results concerning the classical
NN operators.

Recall �rst that b·c stands for the �integral part� of a given real number
x, i.e.,

bxc := max {k : such that k ∈ Z, and k ≤ x} ,

while d·e stands for the �ceiling�, i.e.,

dxe := min {k : such that k ∈ Z, and k ≥ x} .
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Here we consider sigmoidal activation functions, σ, which satisfy the
assumptions made in the previous section, together with the technical con-
dition

σ(2) > σ(0). (4)

The following inequality,
bnb1c∑

k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

=

s∏
i=1

bnbic∑
ki=dnaie

φσ(nxi − ki) ≥ [φσ(1)]s > 0, (5)

can be established for every x ∈ R, where k := (k1, ..., ks) ∈ Zs, see [31].

De�nition 3.1. Let f : R → R be a bounded function, and n ∈ N+ such that

dnaie ≤ bnbic for every i = 1, ..., s. The linear multivariate NN operators

Fn(f, x), activated by the sigmoidal function σ, and acting on f , are de�ned

by

Fn(f, x) :=

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

f (k/n) Ψσ(nx− k)

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

,

for every x ∈ R and k/n := (k1/n, ..., ks/n).

For n ∈ N+ su�ciently large, we always obtain dnaie ≤ bnbic, i = 1, ..., s.
Moreover, ai ≤ ki

n ≤ bi if and only if dnaie ≤ ki ≤ bnbic, and since f is
bounded, Fn(f, x) turns out to be well de�ned for all x ∈ R. Note that
Fn(1, x) = 1, for every n su�ciently large. We now prove the following
pointwise and uniform convergence results for the classical NN operators
[31].

Theorem 3.2. Let f : R → R be bounded. Then,

lim
n→+∞

Fn(f, x) = f(x)

at each point x ∈ R of continuity of f. Moreover, if f ∈ C(R), then

lim
n→+∞

sup
x∈R
|Fn(f, x)− f(x)| = lim

n→+∞
‖Fn(f, ·)− f(·)‖∞ = 0.
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Proof. Let x ∈ R be a point where f is continuous. By means of (5) we can
write

|Fn(f, x)− f(x)| =

∣∣∣∣∣∣
bnb1c∑

k1=dna1e

...

bnbsc∑
ks=dnase

[f(k/n)− f(x)] Ψσ(nx− k)

∣∣∣∣∣∣
bnb1c∑

k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

≤ 1

[φσ(1)]s

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

|f(k/n)− f(x)|Ψσ(nx− k),

for every n ∈ N+ su�ciently large. Let now ε > 0 be �xed. From the
continuity of f at x, there exists γ > 0 such that |f(y)− f(x)| < ε for every
y ∈ R with ‖y − x‖2 < γ. Hence

|Fn(f, x)− f(x)| ≤ 1

[φσ(1)]s

 ∑
‖nx−k‖2≤nγ

|f(k/n)− f(x)|Ψσ(nx− k)

+
∑

‖nx−k‖2>nγ

|f(k/n)− f(x)|Ψσ(nx− k)

 =:
1

[φσ(1)]s
(I1 + I2) .

Let �rst estimate I1. Using Lemma 2.2 (v), the continuity of f at x, and
that ‖nx− k‖2 ≤ nγ, i.e., ‖k/n− x‖2 ≤ γ, we obtain

I1 < ε
∑

‖nx−k‖2≤nγ

Ψσ(nx− k) ≤ ε.

Furthermore, by the boundedness of f and Lemma 2.2 (vii), we have, for n
su�ciently large,

I2 ≤ 2 ‖f‖∞
∑

‖nx−k‖2>nγ

Ψσ(nx− k) < 2 ‖f‖∞ ε,

uniformly with respect to x ∈ Rs. The proof of the �rst part of the theorem
then follows by the arbitrariness of ε. When f ∈ C(R), the second part
of the theorem follows similarly, replacing γ > 0 with the parameter of the
uniform continuity of f in R.

4 The max-product neural network operators

In this section, we recall de�nition and main results concerning the max-
product NN operators. The max-product NN operators represent neuro-
processing models in which the global behavior of the network is mainly
determined by one of the arti�cial neuron of the network.
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Also here, we consider sigmoidal activation functions, σ, which satisfy
the technical condition σ(2) > σ(0), introduced in Section 3.

In order to study the aforementioned family of nonlinear operators, we
�rst introduce some notation. We de�ne∨

k∈J
Ak := sup {Ak : k ∈ J} ,

where J is any set of indices. Clearly, if the cardinality of J is �nite, the
sup in the previous de�nition reduces to the maximum value. In the next
lemma, we will show that, by using the max-product operator

∨
in place

of the symbol
∑
, properties similar to those showed in Section 2 can be

established, see, e.g., [40].

Lemma 4.1. (i) For any �xed x ∈ R, the following holds:∨
k∈Jn

Ψσ(nx− k) ≥ [φσ(1)]s > 0,

where Jn denotes the set of indices k ∈ Zs, such that ki = dnaie, dnaie +
1, dnaie+ 2, ..., bnbic, i = 1, ..., s, for every n ∈ N+ su�ciently large.

(ii) For every γ > 0, we have∨
k ∈ Zs :

‖x− k‖2 > nγ

Ψσ(x− k) = O(n−1−α), as n→ +∞,

uniformly with respect to x ∈ Rs.

Remark 4.2. Note that, in order to prove the convergence results for the
max-product NN operators de�ned below, it su�ces to assume a weakened
version of assumption (Σ3) on σ. Indeed, by requiring that σ(x) = O(|x|−α),
as x→ −∞, for α > 0, it turns out that∨

k ∈ Zs :
‖x− k‖2 > nγ

Ψσ(x− k) = O(n−α), as n→ +∞,

uniformly with respect to x ∈ Rs, with γ > 0, see [39, 40]. The above
property can be used in order to prove a pointwise and uniform convergence
theorem for the max-product NN operators.

Now, we recall the following
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De�nition 4.3. Let f : R → R be a bounded function, and n ∈ N+ such

that dnaie ≤ bnbic, i = 1, ..., s. The multivariate max-product neural network

(NN) operators activated by σ are de�ned by

F (M)
n (f, x) :=

∨
k∈Jn

f (k/n) Ψσ(nx− k)

∨
k∈Jn

Ψσ(nx− k)
, x ∈ R,

where Jn denotes the set of indexes k ∈ Zs, such that ki = dnaie, dnaie +
1, dnaie+ 2, ..., bnbic, i = 1, ..., s, for every n ∈ N+ su�ciently large.

In general, when n ∈ N+ is su�ciently large, it turns out that every
component dnaie ≤ bnbic, i = 1, ..., s. Further, in view of Lemma 4.1 (i),
and since f is bounded, we have that the above operators are well-de�ned.
Moreover, denoting by 1 the unitary constant function on R, it is easy to
prove the following useful property

F (M)
n (1, x) = 1, x ∈ R.

Other important properties of the operators F
(M)
n can be proved in the fol-

lowing

Theorem 4.4. Let f , g : R → R be bounded functions. The following

properties hold for su�ciently large n ∈ N+:

(i) If σ(x) is continuous on R, then F (M)
n (f, ·) is continuous on R.

(ii) If f(x) ≤ g(x), for each x ∈ R, we have F
(M)
n (f, x) ≤ F

(M)
n (g, x), for

every x ∈ R.

(iii) F
(M)
n (f + g, x) ≤ F

(M)
n (f, x) + F

(M)
n (g, x), x ∈ R, i.e., the F (M)

n 's are

sub-additive (or sub-linear) operators.

(iv)
∣∣∣F (M)
n (f, x)− F (M)

n (g, x)
∣∣∣ ≤ F (M)

n (|f − g|, x), x ∈ R.

(v) The F
(M)
n 's are positive homogeneous operators, i.e., for each λ > 0, it

turns out that F
(M)
n (λf, x) = λF (M)(f, x), x ∈ R.

The proof of all such properties (listed in Theorem 4.4), follows easily by
the properties of

∨
. For more details, see [39, 40].

We are now able to prove the following approximation results.

Theorem 4.5. Let f : R → R+
0 be a bounded function, and let x ∈ R be a

point of continuity for f . Then

lim
n→+∞

F (M)
n (f, x) = f(x).
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Moreover, if f ∈ C+(R) and bounded, it turns out that

lim
n→+∞

‖F (M)
n (f, ·)− f(·)‖∞ = 0.

Proof. We will prove the �rst part of theorem only, since the second one
follows by similar arguments and exploiting the uniform continuity of the
function f .

Let now x ∈ R be a �xed point of continuity for f . By using the prop-
erties stated in Theorem 4.4, we can write

|F (M)
n (f, x)−f(x)| ≤ |F (M)

n (f, x)−f(x)F (M)
n (1, x)|+ |f(x)F (M)

n (1, x)−f(x)|

= |F (M)
n (f, x)− f(x)F (M)

n (1, x)| + f(x)|F (M)
n (1, x)− 1|

= |F (M)
n (f, x)− F (M)

n (fx, x)| ≤ F (M)
n (|f − fx|, x),

for every n ∈ N+ su�ciently large, where by fx we denote the following
auxiliary function:

fx(t) := f(x), t ∈ R.
Let now ε > 0 be �xed, we denote by γ > 0 the corresponding parameter
related to the continuity of f at x. Thus, by Lemma 4.1 (i), we can obtain

F (M)
n (|f − fx|, x) ≤ 1

[φσ(1)]s

 ∨
k∈Jn

|f (k/n)− f(x)| Ψσ(nx− k)



=
1

[φσ(1)]s
max


∨
k∈Jn

‖nx− k‖2 ≤ nγ

|f (k/n)− f(x)| Ψσ(nx− k);

∨
k∈Jn

‖nx− k‖2 > nγ

|f (k/n)− f(x)| Ψσ(nx− k)

 =:
1

[φσ(1)]s
max {I1, I2} .

Now, concerning I1, if ‖nx − k‖2 ≤ nγ or equivalently ‖x − (k/n)‖2 ≤ γ,
and by the continuity of f at x, we have

I1 ≤ ε ·
∨
k∈Jn

‖nx− k‖2 ≤ nγ

Ψσ(nx− k) ≤ ε · [φσ(0)]s,

in view of Remark 2.3. As for I2, we can use the boundedness of f and
Lemma 4.1 (ii), to show that

I2 ≤ 2 ‖f‖∞ ·
∨

‖nx−k‖2>nγ

Ψσ(nx− k) ≤ ε,
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for n ∈ N+ su�ciently large. Finally, the proof follows by the arbitrariness
of ε.

Remark 4.6. Note that, the convergence results proved in Theorem 4.5
can be extended to every bounded function f : R → R, by the following
procedure. Let c ∈ R be a constant, such that c ≤ inf

x∈R
f(x). In this case,

we have f(x)−c ≥ 0, for every x ∈ R, then F (M)
n (f−c, ·) converges to f−c,

as n→ +∞, pointwise, at any point of continuity of f , or uniformly, if f is
continuous on the whole R. For the above reasons, it is easy to see that the

family F
(M)
n (f − c, ·) + c converges to f , as n→ +∞, (see [27] for the same

consideration in case of Bernstein max-product operators).

The multivariate NN operators above of the max-product type, allow
us to obtain a constructive, nonlinear approximation formula, which allow
us to achieve more accurate approximations than the corresponding linear
counterparts studied in Section 3.

More precisely, the estimates for the order of approximation that can be
achieved using the operators studied in Section 3, are very similar to those
established in [40], and the theoretical order of approximation is the same
in both cases, i.e., it is proportional to ω(f, n−1), when the assumption (Σ3)
is satis�ed for α ≥ 1. Here ω(f, δ) denotes the modulus of continuity of
f , δ > 0, as customary. However, the quality of the approximation turns
out to be globally better using the NN operators of the max-product type,
since all the constants obtained in the aforementioned estimates are sharper
compared to those obtained in [31]. For more details, see also [39].

Remark 4.7. The theory of NN operators of the max-product type acti-
vated by sigmoidal functions, introduced and analyzed in [39, 40], arise as an
extension of the results proved in [3]. In particular, in [3] the authors studied
max-product NN operators in one dimension, similar to those introduced by
Cardaliaguet and Euvrard in [19], and de�ned as

C(M)
n,α (f)(x) :=

n2∨
k=−n2

b

(
n1−α

(
x− k

n

))
f

(
k

n

)
n2∨

k=−n2

b

(
n1−α

(
x− k

n

)) , x ∈ R,

for any uniformly continuous and bounded function f : R → R, where b(x)
is a certain centered bell-shaped function, and 0 < α < 1.

In order to obtain approximation results, the authors make on the func-
tion b(x) some quite restrictive assumptions, such as: b(x) continuous, supp b ⊆
[−T, T ], T > 0, and, moreover,

m1(T − x) ≤ b(x) ≤ M1(T − x), x ∈ [0, T ], (6)
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m2(T + x) ≤ b(x) ≤ M2(T + x), x ∈ [−T, 0], (7)

for some positive constants m1, m2, M1, and M2. One of the advantages we
obtained in this section by the present approach, and by means of the oper-

ators F
(M)
n , is that, in case of the univariate theory, the function Ψσ(x) re-

duces to φσ(x), which is a centered bell-shaped function (as noted in Remark
2.3(a)), not necessarily continuous, whose support can be also unbounded,
and thus assumptions (6) and (7) can be dropped.

In particular, the request that supp b ⊆ [−T, T ] does not allow to choose
b(x) = φσ(x), being σ either the logistic or the hyperbolic tangent sigmoidal
functions, which are very important instances of sigmoidal functions within
the theory of the NNs, see, e.g., [43, 52, 50].

Finally, we can observe that the order of approximation achieved by the

operators C
(M)
n,α (see Theorem 3.2 and Corollary 3.3. in [3]) is shown by

|f(x)− C(M)
n,α (f)(x)| ≤ C ω(f, nα−1), x ∈ R, (8)

0 < α < 1, C > 0, n ∈ N+. Comparing the estimate in (8) with the result

showed in [39] concerning the order of approximation achieved by F
(M)
n , it

is clear that the rate of approximation achieved by the max-product NN

operators, F
(M)
n , is better than that attained by the operators C

(M)
n,α .

For the sake of completeness, we can observe that, by means of the op-

erators C
(M)
n,α , we can approximate positive functions de�ned on the whole

real line, while using F
(M)
n , we deal with functions de�ned on compact sets.

In fact, in order to obtain operators useful to approximate functions de�ned
on the full real line, the theory developed in this section has been extended
in [39], obtaining the same advantages described above.

5 The neural network operators of the Kantorovich

type

The theoretical results proved in previous sections are given for continuous
functions only. This is due to the pointwise nature of both, the classical
and max-product NN operators. In order to establish approximation results
also valid for not necessarily continuous functions, we resort to an �averaged
version� of the previous NN operators, i.e., to a Kantorovich-type version of
the Fn's, see [32].

In this section, we introduce and analyze this kind of operators. Here,
we consider sigmoidal activation functions, σ, which satisfy the technical
condition

σ(3) > σ(1). (9)
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In this case, we �rst prove that
bnb1c−1∑
k1=dna1e

...

bnbsc−1∑
ks=dnase

Ψσ(nx− k)

=

s∏
i=1

bnbic−1∑
ki=dnaie

φσ(nxi − ki) ≥ [φσ(2)]s > 0, (10)

for every x ∈ R, where k := (k1, ..., ks) ∈ Zs, see [32]. We then de�ne the
operators that will be studied in this section.

De�nition 5.1. Let f : R → R be a locally integrable function, and n ∈ N+

such that dnaie ≤ bnbic − 1 for every i = 1, ..., s. The �linear multivariate
Kantorovich-type NN operators�, Kn(f, ·), activated by the sigmoidal func-
tion σ and acting on f , are de�ned by

Kn(f, x) :=

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

[
ns
∫
Rnk

f (u) du

]
Ψσ(nx− k)

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

,

where Rnk are the sets de�ned by

Rnk :=

[
k1
n
,
k1 + 1

n

]
× · · · ×

[
ks
n
,
ks + 1

n

]
, (11)

for every k = (k1, ..., ks) ∈ Zs, n ∈ N+, and x ∈ R ⊂ Rs.

For n ∈ N+ su�ciently large, we always obtain dnaie ≤ bnbic − 1, i =
1, ..., s. Moreover, if dnaie ≤ ki ≤ bnbic − 1, then ai ≤ ki

n ≤ bi − 1
n and

ai ≤ ki+1
n ≤ bi.

Note that, the operators Kn are well-de�ned, for instance, when applied
to bounded functions. Indeed, when f ∈ L∞(R), it is easy to see that
|Kn(f, x)| ≤ ‖f‖∞, for all x ∈ R. Moreover, we can observe that Kn(1, x) =
1, for every x ∈ R and n su�ciently large. First of all, we recall the following
theorem which shows that, even for (Kn)n∈N+ , pointwise and uniform results
for continuous functions, can be proved see [32].

Theorem 5.2. Let f : R → R be bounded. Then,

lim
n→+∞

Kn(f, x) = f(x),

at each point x ∈ R where f is continuous. Moreover, if f ∈ C(R), then

lim
n→+∞

sup
x∈R
|Kn(f, x)− f(x)| = lim

n→+∞
‖Kn(f, ·)− f(·)‖∞ = 0.
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We omit the proof of Theorem 5.2, since it can be obtained by a pro-
cedure similar to that followed for the proofs of the pointwise and uniform
convergence results of Section 3 and Section 4. As an easy consequence of
Theorem 5.2, we have the following

Theorem 5.3. For every f ∈ C(R), we have

lim
n→+∞

‖K(f, ·)− f(·)‖p = 0,

where ‖ · ‖p denotes the usual Lp(R) norm, with 1 ≤ p < +∞.

In order to establish the convergence in Lp of the family of the above
operators, we �rst prove the following

Theorem 5.4. The inequality

‖Kn(f, ·)‖p ≤
‖Ψσ‖1/p1

[φ(2)]s/p
‖f‖p

holds for every f ∈ Lp(R), 1 ≤ p < +∞, where ‖ · ‖p is the usual Lp(R)
norm, and ‖Ψσ‖1 < +∞ (Ψσ belongs to L1(Rs)).

Proof. For every f ∈ Lp(R), 1 ≤ p < +∞, we have

‖Kn(f, ·)‖p =

(∫
R
|Kn(f, x)|p dx

)1/p

=


∫
R

∣∣∣∣∣∣∣∣∣∣∣∣

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

[
ns
∫
Rnk

f (u) du

]
Ψσ(nx− k)

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

p

dx



1/p

.

Being | · |p convex, we infer from Jensen's inequality (see, e.g., [34]) and (10),
that

‖Kn(f, ·)‖p ≤


∫
R

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

∣∣∣∣∣ns
∫
Rnk

f (u) du

∣∣∣∣∣
p

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

dx



1/p

≤ 1

[φ(2)]s/p

∫
R

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

Ψσ(nx− k)

∣∣∣∣∣ns
∫
Rnk

f (u) du

∣∣∣∣∣
p

dx

1/p
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≤ 1

[φ(2)]s/p

 bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

∫
Rs

Ψσ(nx− k)

∣∣∣∣∣ns
∫
Rnk

f (u) du

∣∣∣∣∣
p

dx

1/p

.

Changing variables, setting x = (t+ k)/n, we obtain

‖Kn(f, ·)‖p ≤
1

[φ(2)]s/p

 bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

1

ns

∫
Rs

Ψσ(t)

∣∣∣∣∣ns
∫
Rnk

f (u) du

∣∣∣∣∣
p

dt

1/p

=
1

[φ(2)]s/p

 1

ns

∫
Rs

Ψσ(t)

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

∣∣∣∣∣ns
∫
Rnk

f (u) du

∣∣∣∣∣
p

dt

1/p

.

Using again Jensen's inequality (see e.g. [34]), we obtain

‖Kn(f, ·)‖p ≤
1

[φ(2)]s/p

 1

ns

∫
Rs

Ψσ(t) dt

bnb1c−1∑
k1=dna1e

· · ·
bnbsc−1∑
ks=dnase

ns
∫
Rnk

|f (u)|p du

1/p

≤ 1

[φ(2)]s/p

(∫
Rs

Ψσ(t) dt

∫
R
|f (u)|p du

)1/p

=
1

[φ(2)]s/p
‖f‖p

(∫
Rs

Ψσ(t) dt

)1/p

.

Thus, we can �nally write:

‖Kn(f, ·)‖p ≤
‖Ψσ‖1/p1

[φ(2)]s/p
‖f‖p.

Remark 5.5. Note that, in case of continuous sigmoidal functions σ (recall
that the present theory can also be applied to discontinuous sigmoidal func-
tions, in view of Remark 2.3), the �rst part of condition (v) of Lemma 2.2,
in the univariate case, s = 1, is equivalent to

φ̂σ(2πk) =

{
1, k = 0,
0, k 6= 0,

(12)

with k ∈ Z, being φ̂σ(v) :=
∫
R φσ(u)e−iuv du the Fourier transform of φσ,

see, e.g., [12, 10]. Hence, it turns out that φ̂σ(0) =
∫
R φσ(y) dy = 1. In the

present case, by the de�nition of the multivariate density function Ψσ(x), it
is easy to see that

‖Ψσ‖1 =

∫
Rs

Ψσ(x) dx =

∫
R
φσ(x1) dx1 · ... ·

∫
R
φσ(xs) dxs = 1.

Then, the inequality of Theorem 5.4 reduces to

‖Kn(f, ·)‖p ≤ φσ(2)−s/p · ‖f(·)‖p, (13)

for every f ∈ Lp(R), 1 ≤ p < +∞.
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From Theorem 5.4, we conclude that the operatorsKn : Lp(R)→ Lp(R),
1 ≤ p < +∞, are continuous.

We are now able to prove the following convergence result.

Theorem 5.6. For every f ∈ Lp(R), 1 ≤ p < +∞, we have

lim
n→+∞

‖Kn(f, ·)− f‖p = 0.

Proof. Let be f ∈ Lp(R) and ε > 0 be �xed. Since the space C(R) is dense
in Lp(R) with respect the norm ‖ · ‖p, there exists g ∈ C(R) such that
‖f(·)− g(·)‖p < (φσ(2)−s/p + 1)−1ε/2. Then, by Theorem 5.4,

‖Kn(f, ·)−f(·)‖p ≤ ‖Kn(f, ·)−Kn(g, ·)‖p+‖Kn(g, ·)−g(·)‖p+‖g(·)−f(·)‖p

≤ 1

[φσ(2)]s/p
‖g(·)− f(·)‖p + ‖Kn(g, ·)− g(·)‖p + ‖g(·)− f(·)‖p

≤
(

1

[φσ(2)]s/p
+ 1

)
‖g(·)−f(·)‖p+‖Kn(g, ·)−g(·)‖p <

ε

2
+‖Kn(g, ·)−g(·)‖p.

Finally, by Theorem 5.3,

‖Kn(f, ·)− f(·)‖p <
ε

2
+

ε

2
= ε,

for n ∈ N+ su�ciently large, the proof follows by the arbitrariness of ε.

An extension of the results proved in this section to functions belonging
to Orlicz spaces, has been obtained in [41]. Moreover, a max-product version
of the Kantorovich NN operators has also been obtained in [42].

6 Examples of sigmoidal activation functions

In this section we provide some examples of sigmoidal activation functions
which satisfy the assumptions needed in the above theory of the NN opera-
tors.

Examples of smooth sigmoidal functions are provided by the well-known
logistic function, σ`(x) = (1+e−x)−1, x ∈ R [14, 49, 57], and by the hyperbolic
tangent sigmoidal function, σh(x) := (1/2)(tanhx + 1), x ∈ R [2, 16]. In
particular, σ` and σh satisfy condition (Σ3) for all α > 0. Moreover, we
observe that both, σ` and σh, satisfy the technical assumptions given in
(4) and (9), thus, they can be used as activation functions for all the NN
operators studied in the present survey.

An example of non-smooth sigmoidal function is also provided by the
ramp function, σR1(x), de�ned by

σR1(x) :=


0, x < −1/2

x+ 1/2, −1/2 ≤ x ≤ 1/2

1, x > 1/2,
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see e.g., [20, 15]. Here, condition (Σ3) is satis�ed for every α > 0, and the
corresponding function φσR1

(x) has compact support. Furthermore, we can
note that σR1(x) satis�es the technical condition (4), while it does not satisfy
(9). For the latter reason, σR1(x) can be used as activation function for the

operators Fn and F
(M)
n , but it cannot be used to de�ne the Kantorovich -

type NN operators. A modi�ed version of σR1(x), for which (9) holds, is
given by the �modi�ed ramp function�

σR2(x) :=


0, x < −3/2

x/3 + 1/2 − 3/2 ≤ x ≤ 3/2

1, x > 3/2.

Also in the case above, all the assumptions of Section 2 are satis�ed.
Other examples of sigmoidal functions satisfying the assumptions of the

previous theory can be constructed starting from the well-known central B-
spline of order n ∈ N+ [12],

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(n
2

+ x− i
)n−1
+

, x ∈ R,

by a simple procedure, described in [33]. Here, the function (x)+ := max {x, 0}
is the positive part of x ∈ R. We then de�ne the sigmoidal function σMn(x)
by

σMn(x) :=

∫ x

−∞
Mn(t) dt, x ∈ R.

Note that, σM1(x) coincides exactly with the ramp function, σR1(x). An
application of such sigmoidal functions has been obtained in [28, 29, 17],
where the authors established some interpolation results by means of a family
of NN operators activated by σMn(x). This fact is useful from the point of
view of the theory of arti�cial NNs, and is relate to the problem of the
�training of an NN�, see, e.g., [67, 51, 61, 28, 29, 60].

We now introduce the following step function (denoted by σ3(x)), as an
example of a discontinuous sigmoidal function which satis�es all assumptions
of Section 2, namely

σ3(x) :=


0, x < −1
1/2, −1 ≤ x ≤ 1
1, x > 1.

In this case, σ3(x) satis�es both (4) and (9).
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Finally, we can choose as activation functions for the above NN operators,
the family of functions

σγ(x) :=



1

|x|γ + 2
, x < −21/γ

2−(1/γ)−2x+ (1/2), −21/γ ≤ x ≤ 21/γ

xγ + 1

xγ + 2
, x > 21/γ ,

(14)

where 0 < γ ≤ 1. Through simple calculations, it can be proved that σγ
satis�es the inequality

σ′γ(x) ≤ φσγ (x) ≤ σ′γ(x) +
1

4
σ

′′
(x+ 1), for every x < −21/γ − 1,

where φσγ (x) := 1
2 [σγ(x+ 1)− σγ(x− 1)], and observing that σ′γ(x) decays

asymptotically as |x|−γ−1, for x→ −∞, and σ
′′
γ (x) decays asymptotically as

|x|−γ−2, for x → −∞, it turns out that φσγ (x) = O(|x|−γ−1), as x → ±∞
(since φσγ is an even function), then it belongs to L1(R). Clearly, also
Ψσγ ∈ L1(Rs), and together with φσγ , they satisfy all the properties listed
in Lemma 2.2, required to prove the convergence results displayed in the
present paper.

7 Final remarks and conclusions

In this paper, we recall some convergence results concerning the theory of
NN operators. By means of such operators, we are able to obtain some
constructive approximation processes based on a kind of NNs. The theory is
developed for functions de�ned only on bounded domains of Rs. However,
the theory can be extended in such a way that even functions de�ned on the
whole real line can be approximated in this way, see [30, 31].

The main di�erence between the operators studied in Section 3 and Sec-
tion 4 (with the Kantorovich-type operators), is that the classical and the
max-product NN operators, due to their de�nition, are suited to approxi-
mate continuous functions, while the Kantorovich-type NN operators allows
us to reconstruct also not necessarily continuous functions (e.g., functions
belonging to Lp-spaces). In addition, the latter could be useful in a number
of applications to Image Processing.

The operators Fn, F
(M)
n , and Kn are strictly related to the theory of

sampling operators (see, e.g., [10, 7, 8, 9, 22, 23]). In fact, the operators
studied in this paper, allow us to reconstruct a given analog signal by means
of discrete families of its sample values. More speci�cally, the NN operators
above allow us to reconstruct duration limited signals (see, e.g., [4, 5, 6, 32,
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35, 36, 37, 38, 39]), and are characterized by kernel functions constructed
by using sigmoidal functions. Note that, max-product sampling operators
de�ned by kernels with compact support, Fejér type kernels, and sinc kernels
have been studied in [24, 25, 26] by Coroianu and Gal.
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