
Neural Approximations of the Solutions

to a Class of Stochastic Optimal Control Problems

Giorgio Gnecco

IMT School for Advanced Studies – Piazza S. Francesco 19, 55100 Lucca – Italy

giorgio.gnecco@imtlucca.it

Marcello Sanguineti

DIBRIS - University of Genova – Via Opera Pia 13, 16145 Genova – Italy

marcello.sanguineti@unige.it

Abstract

The approximate solution of finite-horizon optimal control problems via neural approxima-

tions of the optimal closed-loop control functions is investigated. The analysis enhances the

potentialities of recent developments in neural-network approximation in the framework of se-

quential decision problems with continuous state and control spaces. A class of stochastic optimal

control problems with bilinear dynamical systems is investigated, for which neural-network ap-

proximation mitigates the curse of dimensionality. More specifically, the minimal number of

network parameters needed to achieve a desired accuracy of the approximate solution does not

grow exponentially with the number of state variables. The results obtained provide a theoret-

ical basis to the development of neural-network-based approaches for the suboptimal control of

stochastic dynamical systems.

Keywords: stochastic optimal control, finite horizon, optimal control functions, neural networks,

approximation.

1 Introduction

It is well known that often applied sciences and engineering involve problems with a degree of un-

certainty. For instance, uncertainty can be associated with stock prices in financial applications,

outcomes of market analysis in production planning, rain inflows in water reservoirs systems, lengths

of message queues in telecommunication networks, traveling times in traffic management, etc. This

is the typical case when one has to deal with problems of scheduling, transportation, production

planning and location, inventory, investment, facilities and equipment planning, industrial mar-

keting, management of water resources, asset pricing, capital rationing, taxation, vehicle routing,

engineering design, which are naturally formulated in stochastic environments.
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Here, we focus on N -stage optimization problems, in which the decisions have to be taken in such

a way to maximize the expected value, with respect to the uncertainties, of a reward (or minimize

an expected cost) expressed as a summation over a finite number of stages, and the decisions taken

at each stage depend on state variables that capture the “history” of the optimization process.

Unfortunately, in general such problems cannot be solved in closed form. Hence, one has to search

for suboptimal solutions. Experimental results have shown that optimization over decision functions

built from relatively few computational units with a simple structure may obtain surprisingly good

performance in high-dimensional optimization tasks (see, e.g., [8,14,16,17,20,22] and the references

therein). In these models, the closed-loop decision functions are made up as linear combinations

of input-output maps computed by units belonging to some dictionary [9, 10, 13]. Examples of

dictionaries are those made by perceptron, radial or kernel units, Hermite functions, trigonometric

polynomials, and splines. When the elements of the dictionary are nonlinearly parameterized, one

has nonlinear approximation schemes, such as those based on neural networks [15].

We investigate from a theoretical point of view some issues about the application of nonlinear

approximation schemes of the neural-network type to find accurate suboptimal closed-loop control

functions in a class of stochastic optimal control problems. We derive upper bounds on the loss in

performance when the optimal closed-loop control functions are replaced by their approximations,

and we investigate cases for which upper bounds on such a loss can be translated into upper bounds

on the approximation error of the optimal closed-loop control function at each stage. The departure

points of our analysis are [6,7,12]. Results in the flavour of our Theorems 3.1 and 3.2 were derived

therein, but for a different optimization model, in which the transition between pairs of states is

described by a correspondence, rather than a state equation. In particular, Theorem 3.1 differs, e.g.,

from [7, Lemma 17], since the former is stated for bilinear stochastic dynamical systems. This class

of systems is important since they are the most direct generalization of linear systems. Moreover,

Theorem 3.3 investigates how upper bounds on the errors in approximate optimization translate

into upper bounds on the approximation errors of the optimal closed-loop control functions.

The paper is organized as follows. Section 2 describes the model of finite-horizon stochastic

optimal control problems that we address. Section 3 relates bounds on the approximation error of

the optimal closed-loop control functions to bounds on the loss in performance associated with the

use of their approximations. It also presents a smoothness result, needed for the application of such

bounds. Section 4 specializes the analysis to neural-network-based approximations of the optimal

closed-loop control functions, investigating cases for which they mitigate the curse of dimensionality

(i.e., such that the minimal number of network parameters required to achieve a desired accuracy of

the suboptimal solutions does not grow exponentially with the number of state variables). Finally,

Section 5 concludes the paper with a discussion. The Appendix contains some technical proofs.
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2 The model of stochastic optimal control

We consider a dynamical system described by the state equation

xt+1 = ft(xt, ut, ξt) , t = 0, 1, . . . , N − 1, (1)

where xt ∈ Xt ⊆ Rd is a continuous state vector, x0 = x̂ ∈ X0 is a given initial state, ut ∈ Ut ⊆ Rm

is a continuous control vector, and ξt ∈ Ξt ⊆ Rr are mutually independent random vectors. The

sets Xt satisfy the constraints Xt+1 = {y ∈ Rd : y = ft(xt, ut, ξt), xt ∈ Xt, ut ∈ Ut, ξt ∈ Ξt}, for

t = 0, . . . , N − 1. We denote by gt : Xt 7→ Ut the admissible closed-loop control functions, where xt

is assumed to be known to the decision maker at time stage t.

We state the following stochastic optimal control problem.

Problem SOCP. Find a sequence of optimal closed-loop control functions g◦0, . . . , g
◦
N−1 that

minimizes the cost functional

J := Eξ0,...,ξN−1

{
N−1∑
t=0

ht(xt, gt(xt), ξt) + hN (xN )

}
(2)

subject to the constraints xt ∈ Xt, ut ∈ Ut, and (1).

Let us define the optimal cost-to-go functions

J◦t (xt) := min
gt,...,gN−1

Eξt,...,ξN−1

{
N−1∑
k=t

hk(xk, gk(xk), ξk) + hN (xN )

}
,

for t = 0, . . . , N − 1. Then, the Dynamic Programming (DP) recursive equation (which holds under

mild conditions, see Assumption 3.1 (i-iii) later) is given by

J◦N (xN ) = hN (xN ) ,

J◦t (xt) = min
ut∈Ut

Eξt
{
ht(xt, ut, ξt) + J◦t+1(xt+1)

}
t = N − 1, . . . , 0 . (3)

We denote by g̃0, . . . , g̃N−1 some approximations of the optimal closed-loop control functions

g◦0, . . . , g
◦
N−1. Using such approximate control functions, we now consider approximations of the

optimal cost-to-go functions of the form

J̃t(xt) := Eξt,...,ξN−1

{
N−1∑
k=t

hk(xk, g̃k(xk), ξk) + hN (xN )

}
, (4)
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for t = 0, . . . , N − 1. It is worth noting that the approximations (4) of the optimal cost-to-go

functions J◦t are obtained indirectly through the vector-valued approximations g̃t, . . . , g̃N−1, while

in Approximate Dynamic Programming [21] a single scalar-valued function is used to approximate

J◦t directly.

Finally, for a bounded and continuous function st : Xt 7→ Rm, st = col ( st,1, . . . , st,m ), we let

‖st‖sup(Xt) := sup
xt∈Xt

‖st(xt)‖ := sup
xt∈Xt

√√√√ m∑
j=1

s2
t,j(xt) . (5)

3 Accuracies of suboptimal solutions

In this section we present theoretical results that investigate the approximate solution of Problem

SOCP. Then, in Section 4, we specialize such results to the case of neural-network-based approxi-

mation of the optimal closed-loop control functions.

The next Theorem 3.1 (reported, without proof, in [5]) guarantees, for each fixed stage and state

vector, the continuity of the associated cost-to-go functional with respect to some closed-loop control

functions, using the supremum norm. For the moment, let us use for the the approximations J̃t(xt)

the extended notation J̃t(xt, g̃t, . . . , g̃N−1), to emphasize their dependence on g̃t, . . . , g̃N−1. Then,

Theorem 3.1 shows that, for each xt ∈ Xt, the cost-to-go functional J̃t(xt, g̃t, . . . , g̃N−1) is continuous

with respect to g̃t, . . . , g̃N−1 when the supremum norm is used to measure the approximation errors

of the optimal closed-loop control functions. Of course, when considering the optimal closed-loop

control functions, one obtains J̃t(xt, g
◦
t , . . . , g

◦
N−1) = J◦t (xt). The choice of the supremum norm in

Theorem 3.1 is motivated by the fact that a similar result cannot be obtained, e.g., if the L2-norm

is used for the same purpose (unless the sets Xt are compact, and suitable smoothness constraints

are made on the family of approximators).

Theorem 3.1 For t = 0, . . . , N − 1, suppose that there exist optimal closed-loop control functions

g◦t , and let ft, ht, hN , and g◦t be bounded and Lipschitz continuous, with Lipschitz constants bounded

from above by Lft, Lht, LhN and Lg◦t , respectively. Let g̃t : Xt 7→ Ut be bounded and continuous

approximating closed-loop control functions such that ‖g◦t − g̃t‖sup(Xt) ≤ εt for some εt ≥ 0. Then,

for each xt ∈ Xt, J̃t is continuous with respect to g̃t, . . . , g̃N−1 in the supremum norm and

‖J◦t − J̃t‖sup(Xt) ≤
N−1∑
k=t

Ψk εk , (6)

where, for k = t, . . . , N − 1, Ψk =
(∑N−1

j=k Lhj
(
(1 + Lg◦k)Θjk + δjk

))
+ LhN ΘNk, Θkk = 0,

Θk+1,k = Lfk , Θk+i,k =
(∏k+i−1

j=k+1(1 + Lg◦j )Lfj
)
Lfk , i = 2, . . . , N − k, and δjk is the Kronecker’s

delta.

The next Theorem 3.2 provides a smoothness result valid for the optimal closed-loop control

functions and the optimal cost-to-go functions. The result is an adaptation to the case of bilinear
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stochastic dynamical systems of [7, Lemma 17], which was stated in terms of correspondences. It

can be exploited, e.g., to guarantee the Lipschitz continuity assumption of the optimal closed-loop

control functions, made in Theorem 3.1. Moreover, it is needed to prove the next Theorem 3.3, where

conditions are presented under which one can translate an upper bound on the loss in performance

due to the approximation of the optimal closed-loop control functions into an upper bound on the

approximation error of the optimal closed-loop control function at a given stage. It will be also

exploited to obtain the results derived in Section 4, where the performance of neural-network-based

approximators is investigated, when they are used to construct suboptimal solutions to Problem

SOCP.

We use the following notations for the partial derivatives. By ∇ we denote the nabla operator.

When applied to a scalar function, it gives its gradient (defined here as a column vector). When

applied to a vector function, it returns its Jacobian, i.e., the matrix whose rows are the transposes

of the gradients of the components of the function. Let d1, d2, and d3 be positive integers, x ∈
Rd1 , y ∈ Rd2 , and z ∈ Rd3 . In the case of a composite function, e.g., f(g(x, y, z), h(x, y, z)),

∇1f(g(x, y, z), h(x, y, z)) denotes the vector of partial derivatives of f with respect to its first vector

argument, computed at (g(x, y, z), h(x, y, z)), and ∇xf(g(x, y, z), h(x, y, z)) the full gradient of f

with respect to x. ∇2 denotes the Hessian:

∇2f(x, y, z) =

 ∇
2
1,1f(x, y, z) ∇2

1,2f(x, y, z) ∇2
1,3f(x, y, z)

∇2
2,1f(x, y, z) ∇2

2,2f(x, y, z) ∇2
2,3f(x, y, z)

∇2
3,1f(x, y, z) ∇2

3,2f(x, y, z) ∇2
3,3f(x, y, z)

 , (7)

where for every (x, y, z) ∈ R(d1+d2+d3), ∇2f(x, y, z) ∈ R(d1+d2+d3)×(d1+d2+d3). For a non-negative

integer s, by Cs we denote the class of scalar-valued or vector-valued functions (depending on the

context) that are continuously differentiable up to the order s. For a set X ⊆ Rl, we denote by

int(X) its interior. Finally, for a symmetric real matrix M , we denote by λmin(M) and λmax(M) its

minimum and maximum eigenvalues, respectively.

In the next assumption, items (i-iii) express basic compactness, continuity and convexity re-

quirements under which we study Problem SOCP, whereas items (iv) and (v) impose some form of

strong convexity on the transition and final cost functions. Item (vi) is an assumption of continuity

and interiority of the optimal closed-loop control functions, whereas item (vii) is an assumption on

the transition function ft.

Assumption 3.1 Let s ≥ 2 be an integer, and the following hold.

(i) For t = 0, . . . , N−1, Ξt ⊂ Rr is compact and has nonempty interior, and each ξt has a probability

density pt(ξt) ∈ Cs(Ξt).
(ii) For t = 0, . . . , N , Xt ⊂ Rd is compact and convex, and has nonempty interior. For t =

0, . . . , N − 1, Ut ⊂ Rm is compact and convex, and has nonempty interior.

(iii) For t = 0, . . . , N − 1, ft ∈ Cs(Xt × Ut × Ξt).
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(iv) hN ∈ Cs(XN ), and there exists αN > 0 such that one has

inf
xN∈XN

λmin(∇2hN (xN ) ≥ αN .

(v) For t = 0, . . . , N − 1, ht ∈ Cs(Xt × Ut × Ξt), and for every ξt ∈ Ξt the function ht(·, ·, ξt) is

convex, and there exists αt > 0 such that one has

inf
xt∈Xt,ut∈Ut,ξt∈Ξt

λmin(∇2
2,2ht(xt, ut, ξt)) ≥ αt .

(vi) There exist continuous optimal closed-loop control functions g◦0(x0), . . . , g◦N−1(xN−1) and they

are interior for every xt ∈ int(Xt), i.e., g◦t (xt) ∈ int(Ut) for xt ∈ int(Xt).

(vii) For t = 0, . . . , N − 1, the function ft ∈ Cs(Xt, Ut,Ξt) is affine in the control ut, i.e., it has the

form ft(xt, ut, ξt) = At(xt, ξt)ut + bt(xt, ξt) (where At(xt, ξt) and bt(xt, ξt) are real d×m and d× 1

matrices, respectively). Moreover, for t = 0, . . . , N − 1, there exists ηt ≥ 0 such that

inf
xt∈Xt,ξt∈Ξt

λmin

(
ATt (xt, ξt)At(xt, ξt)

)
≥ ηt .

Finally, the matrices At(xt, ξt) and bt(xt, ξt) are affine in the state xt.

Assumption 3.1 (vii) implies that the stochastic dynamical system to be controlled is bilinear

in xt and ut. Assumption 3.1 is satisfied, e.g., by suitable bilinear “perturbations” of the classical

Linear Quadratic (LQ) optimal control problem, constructed likewise in [12, Section 6]. Moreover,

it also holds for suitable dynamical and bilinear “perturbations” of static optimization problems,

obtained by inserting a sufficiently small discount factor β in the model. In both cases, indeed, the

optimal closed-loop control functions of the perturbed problem are similar to the ones of the simpler

original problem, which can be often solved in closed form. So, if one imposes Assumption 3.1 on

the original problem, one can then define the perturbed problem in such a way that it also satisfies

the same assumption.

Theorem 3.2 Let Assumption 3.1 hold. Then, for t = 0, . . . , N , J◦t ∈ Cs(Xt) and

inf
xt∈Xt

λmin(∇2(J◦t (xt))) ≥ αt . (8)

Moreover, for t = 0, . . . , N − 1, g◦t ∈ Cs−1(Xt).

The next Theorem 3.3 states that, if suitable strong convexity conditions hold (together

with other conditions), then finding a good approximation of the minimum of the functional

J̃t(xt, g̃t, . . . , g̃N−1) allows one to obtain a good approximation of its minimizer. More precisely,

it shows that, under suitable assumptions, if one approximately minimizes J̃N−1(xN−1, g̃N−1) for

each xN−1 ∈ XN−1, then the resulting approximate minimizer g̃◦N−1 is a good approximation of the

optimal closed-loop control function g◦N−1. A similar result holds for the other stages t = N−2, . . . , 0.
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Theorem 3.3 Let Assumption 3.1 hold. Then, for every εN−1 > 0 one has the following implica-

tion:

‖J̃N−1(·, g◦N−1)− J̃N−1(·, g̃◦N−1)‖sup(XN−1) ≤ εN−1

⇒ ‖g◦N−1 − g̃◦N−1‖sup(XN−1) ≤
√

2εN−1

αN−1+αNηN−1
. (9)

Moreover, for any t = N − 2, . . . , 0, and every εt, εt+1 > 0 one has the following implication:

‖J̃t(·, g◦t , . . . , g◦N−1)− J̃t(·, g̃◦t , . . . , g̃◦N−1)‖sup(Xt) ≤ εt
and ‖J̃t+1(·, g◦t+1, . . . , g

◦
N−1)− J̃t+1(·, g̃◦t+1, . . . , g̃

◦
N−1)‖sup(Xt+1) ≤ εt+1

⇒ ‖g◦t − g̃◦t ‖sup(Xt) ≤
√

2(εt+εt+1)
αt+αt+1ηt

. (10)

4 Suboptimal solutions via neural networks

In this section, we investigate the application of neural-network-based approximation schemes with

sigmoidal computational units to the approximate solution of Problem SOCP.

Definition 4.1 A sigmoidal function σ : R→ R is a bounded measurable function such that σ(y)→
1 as y → +∞, and σ(y)→ 0 as y → −∞ [2]).

We first report an upper bound on the function approximation error by sigmoidal neural net-

works, for a specific choice of the set of functions to be approximated. The following Theorem 4.1

from [1] describes a quite general set of functions of d real variables (described in terms of their

Fourier distributions) whose approximation from neural-network-based approximation schemes with

sigmoidal computational units requires1 O
(
ε−2
)

computational units, where ε > 0 is the desired

worst-case approximation error measured in the supremum norm. In the following, we denote by

〈·, ·〉 the standard inner product on Rd.

Theorem 4.1 Let C > 0, d a positive integer, B a bounded subset of Rd containing 0, and ΓB,C

the set of functions f : Rd → R having a Fourier representation of the form

f(x) =

∫
Rd

ei〈ω,x〉F̂ (dω) (11)

for some complex-valued measure F̂ (dω) = eiθ(ω)F (dω) (where F (dω) and θ(ω) are the magnitude

distribution and the phase at the pulsation ω, respectively) such that∫
Rd

sup
x∈B
|〈ω, x〉|F (dω) ≤ C . (12)

1For two functions f, g : (0,+∞)→ R, one writes f = O(g) if and only if there exist M > 0 and x0 > 0 such that
f(x) ≤ Mg(x) for all x ∈ (0, x0). In order to use this notation also for multivariable functions, it is assumed that all
their arguments are fixed, with the exception of one of them (here, ε).
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Then, for every n ≥ 1, there exist a1, . . . , an ∈ Rd, b1, . . . , bn, c0, c1, . . . , cn ∈ R, and fn : B → R of

the form

fn(x) =
n∑
k=1

ckσ(〈ak, x〉+ bk) + c0 (13)

(where σ : R→ R is a sigmoidal function) such that

sup
x∈B
|f(x)− fn(x)| ≤ 120C√

n
d . (14)

Similar upper bounds on the approximation error expressed in the supremum norm, and valid

for other neural-network-based approximation schemes (including those with either Gaussian or

compactly supported computational units), are given, e.g., in [11, 19, 24]. The next Theorem 4.2

shows that under Assumption 3.1, if the degree of smoothness s is sufficiently large compared with

the dimension of the state space, then the optimal closed-loop control functions can be approximated

by a neural-network-based approximation scheme of the form (13), without incurring the curse of

dimensionality in the minimal number of parameters needed by the approximation scheme to achieve

a desired accuracy. For simplicity, here only the case of sigmoidal computational units is presented,

but the result can be extended to the approximation schemes considered, e.g., in [11,19,24].

Theorem 4.2 Let Assumption 3.1 hold with s ≥ bd2 +3c. Then, for each stage t and each component

g◦t,j of the t-th optimal closed-loop control function, there exists a constant Ct,j > 0 such that, for

every positive integer n, there is a function ft,j,n of the form (13) for which

sup
xt∈Xt

|g◦t,j(xt)− ft,j,n(xt)| ≤
120Ct,j√

n
d . (15)

Proof. It follows from Theorem 3.2 that g◦t,j ∈ Cs−1(Xt), where Xt is bounded and convex. Then, by

Sobolev’s extension theorem [23, Theorem 5, p. 181, and Example 2, p. 189], it can be extended to

a function ḡ◦t,j belonging to the Sobolev space2 Ws−1,2(Rd), hence it also belongs to the set ΓXt,Ct,j

for a sufficiently large Ct,j > 0, since s− 1 ≥ bd2 + 2c (see [2, Section IX, Example 15]). Finally, one

concludes by applying Theorem 4.1.

The following result provides an upper bound on the loss of performance in solving Problem

SOCP, when functions of the form (13) are used to approximate the components of the optimal

closed-loop control functions.

Theorem 4.3 Let Assumption 3.1 hold with s ≥ bd2 + 3c. Then, there exist constants Ct,j > 0 such

that the following hold. Let each component g̃t,j of the approximation g̃t of each optimal closed-loop

control function g◦t be of the form (13), with n = nt,j. Then, there exists one choice for the functions

2I.e., the space of locally integrable functions f : Rd → R whose weak partial derivatives up to the order s− 1 are
square-integrable.
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g̃t,j for which

‖J◦t − J̃t‖sup(Xt) ≤
N−1∑
k=t

Ψk Φ

√√√√ m∑
j=1

C2
k,j

nk,j
, (16)

where the constants Ψk are defined as in Theorem 3.1, and Φ = 120 d.

Proof. The result is obtained by combining Theorems 3.1 and 4.3 (the Lipschitz continuity assump-

tions of Theorem 3.1 follow from Assumption 3.1 (iv,v,vii) and from Theorem 3.2), and by using

(5).

5 Discussion

Theorems 3.1 and 3.3 can be exploited to investigate the relationship between the error in the

approximation of the optimal closed-loop control functions in stochastic optimal control problems,

and the loss in performance due to such an approximation. Theorem 3.1 does this in a “forward”

manner (showing how upper bounds on the approximation errors of the optimal closed-loop control

functions can be translated into upper bounds on the loss in performance), while Theorem 3.3 works

in a “backward” manner (showing how upper bounds on the loss in performance can be translated

into upper bounds on the approximation error).

Theorem 4.2 shows that, under suitable assumptions, the optimal closed-loop control functions

can be approximated by using a sigmoidal approximation scheme, without incurring the curse

of dimensionality in the minimal number of parameters used by such an approximation scheme.

Theorem 4.3 shows how the loss in performance can be controlled, again without incurring the

curse of dimensionality.

The analysis can be extended to other neural-network-based approximation schemes, using the

upper bounds on the function approximation error provided in [11, 19, 24]. As another possible

extension, our results (particularly, Theorem 3.3) can be applied to linear approximation schemes,

to find cases for which the approximate solution of Problems SOCP through such schemes suffers,

instead, from the curse of dimensionality. In particular, this extension could be obtained by com-

bining Theorem 3.3 with the inverse problem technique that was already used in [3,4] to construct

dynamic optimization problems associated with given optimal policy functions, choosing such func-

tions in such a way that they are “easily” approximable by sigmoidal neural networks, but “hard”

to be approximated by linear approximation schemes.

Appendix

Here, we collect the proofs of some technical results.
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Proof of Theorem 3.1. For xt ∈ Xt, let x◦t = x̃t = xt, and, for k = t, . . . , N − 1, under the

same realizations of the random vectors ξk, let

x◦k+1 := fk(x
◦
k, g
◦
k(x
◦
k), ξk) , (17)

and

x̃k+1 := fk(x̃k, g̃k(x̃k), ξk) . (18)

By the Lipschitz continuity of the functions hk and hN and the triangle inequality, we get

‖J◦t − J̃t‖sup(Xt) ≤ Eξt,...,ξN

{N−1∑
k=t

Lhk(‖x◦k − x̃k‖+ ‖g◦k(x◦k)− g̃k(x̃k)‖) + LhN ‖x
◦
N − x̃N‖

}
. (19)

The Lipschitz continuity of fk and g◦k, the triangle inequality, and the definition of g̃k give

‖g◦k(x◦k)− g̃k(x̃k)‖

= ‖g◦k(x◦k)− g◦k(x̃k) + g◦k(x̃k)− g̃k(x̃k)‖

≤ ‖g◦k(x◦k)− g◦k(x̃k)‖+ ‖g◦k(x̃k)− g̃k(x̃k)‖

≤ Lg◦k‖x
◦
k − x̃k‖+ ‖g◦k(x̃k)− g̃k(x̃k)‖

≤ Lg◦k‖x
◦
k − x̃k‖+ εk , (20)

and by (20)

‖x◦k+1 − x̃k+1‖

≤ Lfk

√
‖x◦k − x̃k‖2 + ‖g◦k(x◦k)− g̃k(x̃k)‖2

≤ Lfk (‖x◦k − x̃k‖+ ‖g◦k(x◦k)− g̃k(x̃k)‖)

≤ Lfk(1 + Lg◦k)‖x◦k − x̃k‖+ Lfkεk . (21)

Let θt = 0 and define the sequence θk+1 = Lfk(1 + Lg◦k)θk + Lfkεk. Let θ̃t = 0 and θ̃k = ‖x◦k − x̃k‖.
Then, the last upper bound in formula (21) provides θ̃k+1 ≤ Lfk(1 + Lg◦k)θ̃k + Lfkεk, and also

θk ≥ θ̃k. The proof is completed by applying (19), solving the linear difference equation θk+1 =

Lfk(1 + Lg◦k)θk + Lfkεk, and regrouping the terms multiplying the same εk.

Before presenting the proof of Theorem 3.2, we report the following technical lemma (which

follows directly from [25, Theorem 2.13, p. 69] and from the example in [25, p. 70]), since it is used

in its proof. We recall that, given a square partitioned real matrix

M =

(
A B

C D

)
(22)

such that D is non-singular, Schur’s complement M/D of D in M is defined [25, p. 18] as the matrix

10



M/D := A−BD−1C . (23)

Lemma 5.1 Let M =

(
A B

BT D

)
be a partitioned symmetric positive-semidefinite matrix such that

D is non-singular. Then λmin(M/D) ≥ λmin(M).

Proof of Theorem 3.2. Assumption 3.1 (i-iii) ensures that, by an application of [18, Theorem

2.6], every t-th optimal cost-to-go function J◦t satisfies the DP recursive equation (3).

For t = N , J◦t = hN ∈ Cs(Xt) and satisfies

inf
xt∈Xt

λmin(∇2(J◦t (xt))) ≥ αt ,

due to the first formula (3) and Assumption 3.1 (iv). For t = N−1, . . . , 0, the fact that J◦t ∈ Cs(Xt)

and satisfies (8) is proved by the following backward induction argument. As a by-product of such

an argument, we also show that g◦t ∈ Cs−1(Xt).

Let xt ∈ int(Xt). Since by Assumption 3.1 (vi) the optimal closed-loop control function g◦t is

continuous and interior on int(Xt), the first-order optimality condition

Eξt
{
∇2ht(xt, g

◦
t (xt), ξt) + (∇2ft(xt, g

◦
t (xt)), ξt)

T ∇J◦t+1(ft(xt, g
◦
t (xt), ξt))

}
= 0 (24)

holds. By differentiating (24) and omitting the arguments (in order to simplify the notation), we

obtain

Eξt
{
∇2

2,1ht + [(∇2ft)
T ∇2J◦t+1∇1ft +∇J◦t+1 · ∇2

2,1ft]

+
[
∇2

2,2ht + [(∇2ft)
T ∇2J◦t+1∇2ft +∇J◦t+1 · ∇2

2,2ft]
]
∇g◦t

}
= 0 , (25)

where ∇J◦t+1 ·∇2
2,1ft and ∇J◦t+1 ·∇2

2,2ft denote the inner products between the corresponding vectors

and third-order tensors, i.e., using the index j to denote the components of xt and ft,

∇J◦t+1 · ∇2
2,1ft =

d∑
j=1

∂J◦t+1

∂xt+1,j
∇2

2,1ft,j (26)

and

∇J◦t+1 · ∇2
2,2ft =

d∑
h=1

∂J◦t+1

∂xt+1,j
∇2

2,2ft,j . (27)

We set (omitting the arguments at the right-hand side)

Nt(xt) := Eξt
{
∇2

2,1ht + [(∇2ft)
T ∇2J◦t+1∇1ft +∇J◦t+1 · ∇2

2,1ft]
}

(28)
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and

Dt(xt) := Eξt
{
∇2

2,2ht + [(∇2ft)
T ∇2J◦t+1∇2ft +∇J◦t+1 · ∇2

2,2ft]
}
, (29)

Note that, since by Assumption 3.1 (vii) ft is affine in the control ut, one has ∇2
2,2ft = 0, so the

matrix Dt(xt) has the simplified expression

Dt(xt) = Eξt
{
∇2

2,2ht + [(∇2ft)
T ∇2J◦t+1∇2ft]

}
(30)

and is non-singular, since its minimum eigenvalue λmin(Dt(xt)) satisfies

λmin(Dt(xt)) ≥ αt + αt+1ηt ≥ αt > 0 (31)

by Assumption 3.1 (v,vii) and

inf
xt+1∈Xt+1

λmin(∇2(J◦t+1(xt+1))) ≥ αt+1

(which holds by the backward induction hypothesis). So, one can apply the implicit function theorem

to g◦t , thus obtaining

∇g◦t (xt) = −D−1
t (xt)Nt(xt) (32)

and g◦t ∈ Cs−1(int(Xt)), still by the implicit function theorem. As the expressions that one can

obtain from (32) for its partial derivatives up to the order s − 1 are bounded and continuous not

only on int(Xt) but on the whole Xt, one has g◦t ∈ Cs−1(Xt).

Similarly, using the DP recursive equation (3) and omitting the arguments at the right-hand

side, one obtains the following expression for the gradient of J◦t :

∇J◦t (xt) = Eξt
{
∇1ht + (∇1ft)

T ∇J◦t+1

}
, (33)

where we have exploited condition (24) to cancel out the zero contribution of ∇g◦t (xt) to (33). By

differentiating the two members of (33) up to derivatives of ht of order s, we obtain J◦t ∈ Cs(int(Xt)).

Likewise for the optimal closed-loop control functions, this extends to J◦t ∈ Cs(Xt).

Finally, by setting

Mt(xt) :=

(
Eξt
{
∇2

1,1ht + (∇1ft)
T∇2J◦t+1∇1ft

}
Eξt
{
∇2

1,2ht + (∇1ft)
T∇2J◦t+1∇2ft

}
Eξt
{
∇2

2,1ht + (∇2ft)
T∇2J◦t+1∇1ft

}
Dt(xt)

)
(34)

and using (32) and (33) and the definition of the Schur’s complement, one obtains the following

expression for the Hessian of J◦t :

∇2J◦t (xt) = Mt/Dt +∇J◦t+1 · Eξt
{
∇2

1,1ft
}
. (35)
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Moreover, ∇2
1,1ft = 0 since the matrices At(xt, ξt) and bt(xt, ξt) in Assumption 3.1 (vii) are affine in

the state xt, so ∇2J◦t has the simplified expression

∇2J◦t (xt) = Mt(xt)/Dt(xt) . (36)

Note that the matrix Mt(xt) is symmetric positive-semidefinite, since it is the sum of the symmetric

positive-semidefinite matrices (
Eξt
{
∇2

1,1ht
}

Eξt
{
∇2

1,2ht
}

Eξt
{
∇2

2,1ht
}

Eξt
{
∇2

2,2ht
}) (37)

and (
Eξt
{

(∇1ft)
T∇2J◦t+1∇1ft

}
Eξt
{

(∇1ft)
T∇2J◦t+1∇2ft

}
Eξt
{

(∇2ft)
T∇2J◦t+1∇1ft

}
Eξt
{

(∇2ft)
T∇2J◦t+1∇2ft

}) (38)

(the first one is symmetric positive-semidefinite by the convexity and assumed smoothness of ht,

the second one by the convexity and assumed smoothness of J◦t+1). So, by formula (31) and Lemma

5.1 one has

inf
xt∈Xt

λmin(Mt(xt)/Dt(xt)) ≥ αt ,

too. Hence, Jt satisfies (8), and the backward induction argument is proved.

Proof of Theorem 3.3. We first prove (9). For each xN−1 ∈ XN−1, let HN−1(xN−1, ·) denote

the function

EξN−1
{hN−1(xN−1, ·, ξN−1) + J◦N (fN−1(xN−1, ·, ξN−1))} . (39)

It follows by the optimality of g◦N−1 and formulas (2), (3), and (39), that

J◦N−1(xN−1)

= J̃N−1(xN−1, g
◦
N−1)

= HN−1(xN−1, g
◦
N−1(xN−1))

≤ HN−1(xN−1, g̃
◦
N−1(xN−1))

= J̃N−1(xN−1, g̃
◦
N−1) . (40)

Then, by Taylor’s theorem with Lagrange’s remainder and the convexity of the set UN−1, one

obtains, for some ūN−1 belonging to the line segment between g◦N−1(xN−1) and g̃◦N−1(xN−1),

HN−1(xN−1, g̃
◦
N−1(xN−1))−HN−1(xN−1, g

◦
N−1(xN−1))

=
1

2
(ãN−1(xN−1))T (∇2

2,2HN−1(xN−1, ūN−1))ãN−1(xN−1) , (41)

where for simplicity of notation we have defined ãN−1(xN−1) := g̃◦N−1(xN−1)− g◦N−1(xN−1) .
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We observe that, by the chain rule and Assumption 3.1 (vii), one has

∇2
uN−1,uN−1

J◦N (fN−1(xN−1, uN−1, ξN−1)) (42)

= ATN−1(xN−1, ξN−1)∇2J◦N (fN−1(xN−1, uN−1, ξN−1))AN−1(xN−1, ξN−1) .

Then it follows by the definition of HN−1(xN−1, ·), Theorem 3.2, Assumption 3.1 (v,vii), and formula

(42) that one has

inf
xN−1∈XN−1,uN−1∈UN−1

λmin(∇2
2,2HN−1(xN−1, uN−1)) ≥ αN−1 + αNηN−1 . (43)

This, combined with (41), provides

HN−1(xN−1, g̃
◦
N−1(xN−1))−HN−1(xN−1, g

◦
N−1(xN−1))

≥ 1

2
(αN−1 + αNηN−1) ‖ãN−1(xN−1)‖2 . (44)

Then, (9) is obtained by combining (40) with (44), and taking the supremum norm on XN−1.

We now detail the proof of (10), for t = N − 2, . . . , 0. In this case, for each xt ∈ Xt, let Ht(xt, ·)
denote the function

Eξt
{
ht(xt, ·, ξt) + J◦t+1(ft(xt, ·, ξt))

}
. (45)

Hence, one obtains

J◦t (xt)

= J̃t(xt, g
◦
t , g
◦
t+1, . . . , g

◦
N−1)

= Ht(xt, g
◦
t (xt))

≤ Ht(xt, g̃
◦
t (xt))

= J̃t(xt, g̃
◦
t , g
◦
t+1, . . . , g

◦
N−1)

= J̃t(xt, g̃
◦
t , g̃
◦
t+1, . . . , g̃

◦
N−1) + J̃t(xt, g̃

◦
t , g
◦
t+1, . . . , g

◦
N−1)− J̃t(xt, g̃◦t , g̃◦t+1, . . . , g̃

◦
N−1)

≤ J̃t(xt, g̃
◦
t , g̃
◦
t+1, . . . , g̃

◦
N−1) + ‖J̃t+1(·, g◦t+1, . . . , g

◦
N−1)− J̃t+1(·, g̃◦t+1, . . . , g̃

◦
N−1)‖sup(Xt+1)

≤ J̃t(xt, g̃
◦
t , g̃
◦
t+1, . . . , g̃

◦
N−1) + εt+1 . (46)

Finally, using (46) and reasoning as above, one obtains

J̃t(xt, g̃
◦
t , g̃
◦
t+1, . . . , g̃

◦
N−1)− J◦t (xt) + εt+1

≥ Ht(xt, g̃
◦
t (xt))−Ht(xt, g

◦
t (xt))

≥ 1

2
(αt + αt+1ηt) ‖ãt(xt)‖2 . (47)

where ãt(xt) := g̃◦t (xt)− g◦t (xt). Then, (10) is obtained from (47) by taking the supremum norm on

Xt.
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